Tempering technology with care

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Sampling with Simulated Tempering

Multimodal structures in the sampling density (e.g. two competing phases) can be a serious problem for traditional Markov Chain Monte Carlo (MCMC), because correct sampling of the different structures can only be guaranteed for infinite sampling time. Samples may not decouple from the initial configuration for a long time and autocorrelation times may be hard to determine. We analyze a suitable...

متن کامل

Variational Tempering

Variational inference (VI) combined with data subsampling enables approximate posterior inference with large data sets for otherwise intractable models, but suffers from poor local optima. We first formulate a deterministic annealing approach for the generic class of conditionally conjugate exponential family models. This algorithm uses a temperature parameter that deterministically deforms the...

متن کامل

Improving Neonatal Care with Technology

The care for preterm infants has improved considerably in the last decades and although the outcome improved, prematurity is still a large global health issue and is ranked in the top 10 of the WHO list of leading causes of burden of disease (1). Prematurity still leads to organ injury, especially of the lungs and brain, and is responsible for 50% of perinatal mortality (2). Historically, much ...

متن کامل

Importance tempering

Simulated tempering (ST) is an established Markov chain Monte Carlo (MCMC) method for sampling from a multimodal density π(θ). Typically, ST involves introducing an auxiliary variable k taking values in a finite subset of [0, 1] and indexing a set of tempered distributions, say πk(θ) ∝ π(θ) k. In this case, small values of k encourage better mixing, but samples from π are only obtained when the...

متن کامل

Deep Tempering

Restricted Boltzmann Machines (RBMs) are one of the fundamental building blocks of deep learning. Approximate maximum likelihood training of RBMs typically necessitates sampling from these models. In many training scenarios, computationally efficient Gibbs sampling procedures are crippled by poor mixing. In this work we propose a novel method of sampling from Boltzmann machines that demonstrate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Spinal Cord Medicine

سال: 2012

ISSN: 1079-0268,2045-7723

DOI: 10.1179/1079026812z.00000000033